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A new model-free method is presented that automatically cor-
rects for phase shifts, frequency shifts, and additional lineshape
distortions of one single resonance peak across a series of in vivo
NMR spectra. All separate phase and frequency variations are
quickly and directly derived from the common lineshape in the
data set using principal component analysis and linear regression.
First, the new approach is evaluated on simulated data in order to
quantitatively assess the phase and frequency shifts which can be
removed by the proposed correction procedure. Subsequently, the
value of the method is demonstrated on in vivo **P NMR spectra
from skeletal muscle of the hind leg of the mouse focusing on the

misclassification of the spectra because they will contribute
the nonnoisy part of the signal and hence will be described t
the signal-related principal componen®).(Thus, prior re-
moval of these kind of spectral variations may be an importa
preprocessing step for both the accurate classification and t
automatic quantitation of (large) spectral data sets.

First attempts have been made on the fast and automa
quantitation of completan vivo NMR spectral data set§€9).
These studies have shown that PCA is a promising techniq
for this purpose, that is, PCA estimates more quickly and mo

phosphocreatine resonance which is distorted by the experimental
procedure. Phase shifts, frequency shifts, and lineshape distortions
with respect to the common lineshape in the spectral data set
could successfully be removed. © 2000 Academic Press

Key Words: in vivo NMR; automatic correction; phase and
frequency shifts; lineshape distortions; principal component
analysis.

precisely the peak integral of a series of noisy peaks the
least-squares approaches operating on each spectrum se
rately. However, the PCA quantitation method is sensitive t
phase and frequency variations throughout the spectral data
it is limited to spectral data sets containing one or mor
spectrally isolated peaks which may only vary in amplitude.

Therefore, Brown and Stoyanova developed a PCA-bas
correction method which automatically eliminates phase ar
frequency shift variations of one single resonance peak acrc
a series of spectrd (). Their method is especially dedicated to

In vivo NMR spectroscopy examinations may result in largi'€ analysis of large spectral data sets because it simul
data sets of spectra, e.g., spectra from time series or frégPusly determines all phase and frequency shifts across |
spectroscopic imaging experiments. Separate analysis of edgft Set within one calculation step. Moreover, the shifts ai
spectrum is cumbersome while automated analysis of compl@fdived in a model-independent way, i.e., without assuming
data sets may pose some serious problems. Phase, line posi@fficular model lineshape function. They have tested the
linewidth, and lineshape of resonance peaks are not identig3gthod both on simulated and on experimental data. The
for all spectra due to experimental variations. This may cauisults on simulated data have demonstrated that it can ac
problems for peak integral estimations by various least-squafately handle phase shifts up to 45° and frequency shifts of le
approaches proposed for this purpose4). Lineshape varia- than half a linewidth. Their experimental results depict tha
tions throughout series of spectra hamper the correct peak @#€r spectral variations than phase and frequency shifts, li
estimation since the least-squares approaches assume onelipgshape variations, could not be compensated for by usil
ticular model lineshape function (Lorentzian, Gaussian). Phd&eir approach.
and frequency shifts throughout spectra demand user interacThis paper deals with an improved method for quickly
tion to perform accurate quantitation on complete serieis of removing phase and frequency shifts in large spectral data se
vivo NMR spectra. Spurious spectral variations may also cau¢ds a simple, robust, and flexible method which combine:
problems for classification purposes using pattern recogniti®€A and linear regression to obtain all separate phase a
methods like discriminant analysis and principal componefiequency shifts within one calculation step. Phase and fr
analysis (PCA) %). They may lead to misinterpretation andquency shifts are determined unambiguously and precisely
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(large) spectral data sets. Furthermore, larger phase shifts (USR(w;) = by 1 fr(w;) + b, fi(w) + besfr(w;) + b sfi(w))

to 60°) and larger frequency shifts (up to two times the linewidth) , )

can easily be removed. An additional advantage of the new * bestr(wy) + Diefilay) + - -, []

method is that it can deal with lineshape variations across a series

of spectral lines. The new method has been tested on simulatdiere by is the ith Taylor coefficient of spectrunk. The

data as well as on time seriesinfvivo *P NMR spectra. second and third Taylor coefficients,(;, andb, ;) contain the
phase and frequency shift information of each spectiym

THEORY respectively,

General
—b2  Asin g

Each complex spectruig, (without noise) in a large series = " =tang, [6a]
bk,l AkCOS (2% !

of spectra which have the same lineshape function, but are
possibly shifted in phase and/or frequency, can be described by Des  AwACOS P,

| b= Acose, ~Aex [6b]
Si(w) = Ae'f(w; + Awy), (1]

_ _ . Brown and Stoyanova (B&S) Method for Removing Phase
where S(w)) is the discrete signal of thith spectrum at  and Frequency Shifts
frequencyw;, Ay is the amplitude of spectruin i = V(-1), o o
¢, is the phase offset of spectruky f(w,) is the complex A short Qesgr|pt|on of thg existing method of Brown anc

Equation [1] then becomes reader is referred to ReflQ).
Brown and Stoyanova apply principal component analysi
, df (12) to series of real-valued spectra containing phase ar
S((w)) = Akewk{f(wj) + ‘d—w‘ Awy frequency shifts. They use the first principal component,JPC
o of the series of spectra to estimate the real part of the unknoy
resonance lineshape function in the data set. They obsery
Awl+ - - } , [2] that at least two more additional PC spectra of the data s
contain the signal-related variance due to the phase and f

quency shift differences among the spectra. Therefore, they L

where the third and higher order terms are neglected for ¢ second and third PC loading spectra of the series of spec

sake of convenience. The complex terms can be rewritten §8C: and PG) to estimate the phase and frequency shift of eac
individual spectrum. A transformation matrix is calculatec

[3a] which transforms the coordinate system defined by, (PC,,
PC;) to a new coordinate system defined by (PEC,, PC,)).
fw) = fr(w) + if(w), [3b]  Subsequently, the scores of each spectrum on theRCPG
spectra are projected onto this new coordinate system explc
wherefr(w;) andf,(w;) are the real and imaginary parts ofing the above transformation matrix. These projections (scor
f(w;). After substitution of Egs. [3a] and [3b] in Eqg. [2], theT) are used to approximate each specttuand its (possible)
following expression for the real (physical) part of the signal ighase and frequency shifts according to
obtained:

1 d*
4

2 | dw?

wj

e'? = cospy + i sin ¢

SH(w)) = TePC(@) + Tee PCL(@) + TeuPCi(w)),
SK(w)) = Ak{COS(PkfR(wj) — sin ¢ f(w)) (0 = TieoPGl03) # Thee, PGul) + Tiro P ) -

T Aocosefr(e) — Aosin efi(w) with (see Egs. [6a] and [6b])

1
+ > AwﬁCOSqokf'ﬁ(wj)

and Aw,= T [8]

1 .
— éAwﬁsm of i) + - - } , [4]

In this way, phase and frequency shifts across a series
where S{(w) is the real part o5,(w), fi(w) is the first deriv  resonances are simultaneously estimated via a target trans
ative of fg(w), and so on. Equation [4] can be rewritten as mation of the P¢ and PG score vectors.
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Novel Method for Removing Phase and Frequency Shifts way, frequency shift corrections exceeding the actual fre

. o . _quency resolution can be applied.
In this paper we propose the application of linear regression

to derive the phase and frequency shifts directly from the PC By repeating the whole procedure (steps 1-4) the spectra :
spectrum instead of deriving these from the,Pahd PG updated until convergence occurs. After convergence, the P
spectra. In this way, the data transformation is circumventéfdd PG spectra only describe noise, indicating that the spect
which obviously benefits the high precision and robustnessltdve been corrected for the phase and frequency shifts (that
the novel method. In addition, the use of linear regressidC: approximates well).

easily allows the incorporation of higher order terms of the N )

Taylor series expansion (Eq. [5]) in order to extend the sign¥Pvel Method for Additional Removal of Lineshape
approximation to spectra containing larger phase and fre-Variations

quency shifts. If the shifts are relatively large, second and after phase and frequency shift correction each resonan
higher order terms in the Taylor series will be needed fge is phased and is shifted to the same spectral position in t
approximate more accurately the phase- and frequency-shifigdy set. However, especially with vivo NMR signals, the

spectra. Then, the second and third Taylor coefficients bet{ggonance lineshape function may be still distorted. Such
reflect the true phase and frequency shifts of each spectrifiyiorted line can be described by a sum of undistorted ling

respectively. _ _ with varying amplitudes and slightly different frequencies. We
The proposed phase- and frequency-shift correction proggnpose here a simple and model-free method to quickly r
dure is as follows. move lineshape distortions in large spectral data sets. This

fjone by fitting each (distorted) single resonance line to the su
& a number of PClineshapes of the complete data set whicl
may vary in amplituded; and in frequency offseA w;.

Step 1: PCA is applied to the series of real-valued spectra
obtaining the P€spectrum of the data set.

Step 2: Using linear regression, each spectkuis approx-
imated by a linear combination of the BGhe PG,, and one
or more of their signal-containing derivatives: "

Sdw)) = > AiPC(w; + Awy;), [11]
i=1
SE(CUJ) = bk,lpcl(wj) + bk,zpcl,l(wj)
+ b sPCi(w) + by PC(w) where PG(w;) is used to approximate the underlying unaf
fected resonance lineshape. Harés the number of PClines,
i denotes thath PC, line with amplitudeA; and frequency
offset Aw;, andS, denotes the real (measured) spectrum. Th

With the classical least-squares solution the coefficients RioPlem is to find the amplitudes and frequency offsets from

Eq. [9] for all spectrak are obtained within one calcula-Mited number of PGlines for each spectrurk. .
tion step. The proposed correction procedure for lineshape variatiol

is as follows.
Step 3: The numerical values for the phase and frequencystep 1: Application of PCA to the series of phase- ani
shifts of each spectruikin the data set are obtained from th‘?requency—shift corrected spectra for obtaining, RE).
regression coefficients on the RGnd the PG spectra, 1&  gop 2: Based on the Taylor expansion discussed in t

spectively (see Egs. [6a] and [6b]), previous section, a first-order Taylor approximation of eac
spectrumk dedicated to the above problem is described:

+ b sPCi(w) + b ePCl(w) + - - [9]

tan ¢ —bk’z
k - ]
bk,l n n
Sdw;) = > CkiPClw; + Awy;) + > diiPCi(w; + Awy;).
D3 i=1 i=1
Awk = m [10]

[12]

_Step 4. Finally, the spec_tra are correc_ted for the CalCUIatﬁ\dset of n starting frequency offsets is subjected to thEC,

shifts. The phase corrections are applied in the frequen|c|¥
. S : . ifes for each spectrurk.

domain by multiplying the spectra with a factor exfi(p,),
while the frequency shift corrections are applied in the time Step 3: Equation [12] is solved using linear regression. Tt
domain. This is done by an inverse FFT (fast Fourier transeefficientsc,; contain the amplitude information of each PC
form) of the spectra, multiplying each time signal witHine, while the frequency offset adjustmehbf each PG line
exp(—iAwt;) and transforming them back using FFT. In thiss acquired in the same way as shown in Eq. [6b]:
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i A |
SAwk‘\ = 7 . [13] ,‘N I ’A‘

Step 4: The PClines are updated with the calculat&dal-
ues and linear regression is started again. In an iterative way all

spectra are simultaneously approximated by the sumPE, /| | \
lines with varying amplitudes and frequency offsets for each M”/:\W /:\w - WWJ:\WWM%
spectrumk. g | | |
Step 5: After convergence, the removal of the peak distor: /‘m p}\ f}\‘
|

tions is accomplished by first subtracting the calculated spe‘Ez— | /: ":\
AN {1, VSO R W) M vt 1 o

trum from the measured spectrum. Then, thePC, lines £
producing the calculated resonance line are shifted to the
spectral position of the common lineshape of the data set (i.e., f 1/\ f
the PG lineshape withAw = 0). Finally, they are added to the /_J\\w \

remaining signal.

|

|

In this way, a major part of the lineshape variations across r; \

the data set. is quickly eIiminatt_ed by transforming simulta- ! _”,_’JL a

neously all distorted resonance lines to the common IP&- ! : ;
shape of the data set.

256 256 256

EXPERIMENTAL FIG. 1. lllustration of the phase- and frequency-shift correction procedure
(A) Five simulated spectra showing different phases and frequency offsets. (
Same spectra after one cycle of the correction procedure. (C) Same spet
after three cycles of the correction procedure.
All data processing was performed using Matlab 4.2¢ soft-
ware (The Mathworks, Inc.).

Data Processing

limb, and 9 spectra during recovery from ischemia. The tim
resolution was 108 sn(= 12, TR= 9 s). The occlusion by a
diaphragm plate caused displacements of the leg in the coil a
Simulated data were generated to assess phase and di@ysequently changed the shimming. This resulted in shifts a
quency shift removal by the proposed method and by tgymmetric broadening of the resonance lines. The spect
existing B&S method10). In the simulation study 100 spectraregion around the single phosphocreatine (PCr) resonance v
of 512 data points were generated. Each spectrum containegliéfrom the spectra and was first subjected to the novel pha:
single Lorentzian line centered at position 256 with linewidtgnd frequency-shift correction procedure. The PCr lineshape
7 = 30 data points and amplituda. Gaussian-distributed expected to be rather insensitive to biochemical changes ar
white noise o = 0, o = 1) was added to the spectra. Thisience, its variations throughout the time series are entirely d
procedure was repeated several times in order to genengt€instrumental or unwanted experimental variations).(
various simulated data sets. Each simulated data set was Stherefore, the PCr peak is often used as a reference peak
jected to one amplitude variationA(= 20, 50, or 80, in eliminating undesired phase and frequency shifts in the inc
arbitrary units) and to two uniform distributions of phase angidual 3P NMR spectra. After removal of the undesired phas
frequency shifts. In this way, each spectrum in a data set of 188d frequency shifts additional lineshape distortions were r
spectra contained a single Lorentzian line of some signal-igroved from the PCr resonances.
noise ratio &N, defined as\/ 2* ¢) varying independently to
a certain degree in phase and in spectral position. Figure QGarrection for Phase and Frequency Shifts
shows five spectra from one simulated example data set wit
S/N = 25 which vary in phase (betweerd5° and 45°) and in
line position (between 256- 7/2 and 256+ 1/2).

Simulated Data

hI'he proposed phase- and frequency-shift correction proc
dure starts with a PCA of the series of spectra using the SV
(singular value decomposition) algorithm. The SVD algorithn
is applied to the data matrix in which the rows represent th
spectra and the columns represent the spectral frequencies
The experimental data set consists of a total of tD8ivo calculates the first principal component (PGpectrum nor
*'P NMR spectra of the skeletal muscle of the hind leg of founalized to unit length. The imaginary part of the P®ectrum
mice (M1 to M4), acquiredta7 T (12). During one measure- (PC,)) is obtained by the Hilbert transform, while the deriva
ment session 4 spectra were acquired during a rest period,ti¥és of the PG and its imaginary part are obtained by numer
spectra under ischemic conditions, i.e., occlusion of the hinzhl differentiation. Subsequently, the R@he PG,, and one or

Experimental Data
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more of their derivative spectra showing signal-related intenx
sities are included in the regression analysis. After linear - A
regression, each spectruknis corrected for the calculated g o
phase and frequency shifts (see Theory). The corrected spedra s
are once again subjected to the correction procedure until t@e" o
shift corrections become negligibly small, i.e., phase corre¢ -
tions <0.1° and frequency-shift correctiors0.1 data point.  _,;- &
One full iteration cycle of the automatic correction procedure o

involving 100 spectra of 512 data points takes @bbs on a —40° 0 w° -5 0 15
SUN Ultra 10 workstation.

[l

est. shift (data points)
(=)
-

L
[
+

o
'y

B
Quantitative Simulation Study w &

o

Phase- and frequency-shift estimations in a series of 1@) f"
simulated spectra were evaluated as a function of the size of t.Ee0
phase and frequency shifts, tB&\ of the spectra investigated, ® oot
and the PG (signal-related) spectra included in the regressions:| * .#
model. The existing B&S method was excluded from this study
due to its poor convergence characteristics. However, one may  -4° 0 a0’ 18 0 1
assume that since the existing method indirectly uses the PC true phase true shift (data points)
PC,,, and PG spectra for the signal approximation (see The

ory), the size of the phase and frequency shifts which can b IG._2. Performance of the proposed correction procedure and the ex_lstu
correction procedure on the entire example data set. (A) True versus estima

removed by the existing method is in pOtential similar to tho%ﬁ\ase (left) and true versus estimated frequency offset (right) for each inc
which can be removed by the proposed regression methaflial spectrum using the novel method. (B) True versus estimated phase (I¢
using only the PG PC,,, and PG spectra. In the quantitative and true versus estimated frequency offset (right) for each individual spectrt
simulation study the uniform phase shift distribution applied t¢"9 the B&S method.

a data set of 100 undistorted spectra varied frerBq, 5°] up

to [—90°, 90°] in which the interval size varied in steps of 5Additional Correction for Lineshape Variations

in both directions. The applied frequency shift distribution

differed from [~/10, 7/10] up to [=3r, 37] in steps of7/10in 5, jied o the series of PCr resonances after phase- and 1
both dlrectlorjs._ For eac_h c_omblnatlon of one phase and fency-shift correction. In our application study three, PC
frequency shift interval five independent data sets were gengiras were sufficient for accurately fitting each spectrum to E
ated and, subsequently, were evaluated by the proposed ¢9i: |ow-amplitude values were obtained for additional,PC
rection procedure. It was decided that the novel correctiies with calculated frequency offsets significantly differen
procedure failed if 1 or more of the 100 spectra was not tun@ém those already acquired. The initial frequency offset
accurately in phase and/or in frequency. This criterion could B@bjected to the three R@nes were systematically varied to
handled since the application of larger phase and frequensy sure that each distorted resonance line is fitted well. A tot
shifts yielded more and more deteriorated spectra. If all dasd11 experiments were performed, each starting with differer
points in the performance plot depicting the true versus esfiitial frequency offsets (see Table 1). After convergence, th
mated shifts followed a straight line with slope equal to 1, e.hest of the 11 calculated spectra for each spectrum was selec
in Fig. 2A, then the number of successful corrections wassing the minimum Euclidean distance between the PCr spe
increased by 1. If not, the correction procedure had failed. Them and each of these calculated spectra. Only a restrict
decision as to whether the correction procedure had succeesigelctral region was considered to prevent the possible fit
or failed was based on the variance of the data points arouriseline noise. The best fit to each spectrum was used
the straight line. If the variance exceeded a predefined masg¢move the lineshape distortions in the way which is describe
mum threshold level then the correction procedure had failédder Theory.

This decision criterion was sensitive enough to detect 1 false .= | . ) _ .
spectrum among 99 well-adjusted spectra. However, diﬁere\ﬁ?rlflcatlon of Signal Corrections Using PCA Quantitation
threshold levels were defined for the differedifN data sets  The complete series of PCr resonances was quantitat
because it was found that the precision of estimation of tihefore and after correction for phase shifts, frequency shift
separate phase and frequency shifts decreased with decreasintblineshape variations using the alternative PCA quantitatic
S/N of the spectra. method. The application of the PCA method is only justified i

est. shift (data points)
o

'y,
L
=

2

The removal of significant lineshape distortions has bee
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TABLE 1

Fitting of the Complete Series of PCr Resonances Using Differ-
ent Initial Combinations for the Three Frequency Shifts Aw;,

Aw,, and Aw;

WITJES ET AL.

Experiment Aw, Aw, Aw;
number (data points) (data points) (data points)

1 0 0 0

2 -2 0 2

3 —4 0 4

4 -6 0 6

5 -8 0 8

6 -10 0 10

7 —-12 0 12

8 —14 0 14

9 -16 0 16

10 —18 0 18
11 -20 0 20

describes 98.4% of the total spectral variance. Note the hi
precision of the frequency-shift correction which exceeds th
discrete spectral resolution. Figure 2B shows the results of tl
same data set based on the existing B&S method. These
obtained after applying a certain correction factor (R. Stoy
anova, personal communication). It depicts that the precisic
of the phase- and frequency-shift estimations is less compar
with those of the novel method. This is confirmed by the PC
of the series of corrected spectra which only describes 97.1
of the total data variance. In addition, Fig. 2B shows the be
results of the existing method obtained after two iteration:
However, after the next iteration the prediction of the shift:
become worse, while a few iterations later again good appro
imations are obtained. In case linear regression is used sta
(and more precise) phase- and frequency-shift solutions &
obtained after three iterations. This is also the case when or
the PG, PC,,, and PG spectra are included in the regressior

Note. The shifts are expressed in real data points; each PCr spectrgnodel.

consists of a total of 256 data points.

the PCr resonance lines throughout the data set have b

The results of the quantitative simulation study are summi:
rized in the gray level images plotted in Fig. 3 to Fig. 5. Eacl
so-called performance image is a ¥830 intensity matrix in
WHich the pixel intensity varies between 0 and 5, representir

released from phase and frequency variations. Therefore, In
order to verify the signal corrections made, the quantitation
results before and after correction are compared with those
obtained with a standard nonlinear curve-fitting approach using
the complex Lorentzian lineshape function. To compare the
quantitation results of the four mice, the peak areas in each of
the four time series of spectra were multiplied by a factor
which equated the peak areas of the first spectra in each of the
four series. This was done in order to compensate for differ-
ences between the four mice due to the amount of muscular
tissue which was measured.

RESULTS

Simulated Data

Figure 1 illustrates the proposed phase- and frequency-shift
correction procedure for five spectra (Fig. 1A) of a data set of
100 simulated spectr&(N = 25). Also shown are the spectra
after the first phase- and frequency-shift correction (Fig. 1B)
and after three iterative corrections (Fig. 1C). In this case three
iterations appear to be sufficient to align the spectra both in
phase and in frequency. In this particular example, the regres-
sion model was defined by the signal-containing, B@ectra,

i.e., the PG, the imaginary part of the PQPC, ), and their
first-derivative spectra (PGnd PG,). The second and higher
derivative spectra are omitted from the regression analysis
because they only contain noise. Hence, they did not contribute
to the signal approximation.

The performance of the automatic correction procedure for

the entire data set is shown in Fig. 2A. It clearly demonstratglﬁﬁtf\'lvﬁ'ich

[60560°]

[30530°)

[F60560°]

[30530°]

[-T,7]

[21,21]

[-T,t]

[21,27]

Performance images showing the size of the phase and frequen

can be removed by the proposed correction proce8iNer 10,

that all spectra are well-adjusted in phase and in frequengy jinewidth. (A)$ = PC, + PC,, + PC. (B) § = PC, + PC,, + PC, +
after three iterations. The RGf the series of corrected spectrac;,. White image regions denote a 100% performance.
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more terms are added to the regression model, the more it
ations are required until convergence is reached.

Figures 3-5 depict that the white image regions correspon
ing to a 100% performance (thus with a pixel intensity equal t
5) are enlarged if the signal-related RGpectrum is incorpo
rated in the regression model. On the other hand, incorporati
of the PC] and PC, spectra into the regression model does nc
improve significantly the performance of the correction proce
dure (Figs. 5b-5c). This was expected since these secol
derivative spectra show a very Id3N. This demonstrates that

[-60560°] "

[30530°]

[t,7] [21,27] A

F60560°]f
[60560°]
[F30530°]

[30530°]

[-t.7] [27,27]

[-t,t] [21.271] B

FIG. 4. Performance images f&N = 25. (A) §=PC + PC,, + PC.
(B) S=PC + PC,, + PC, + PC;,. For more details see Fig. 3.

[60560°]
the number of successful corrections applied to the five inde-
pendently generated sets of 100 spectra. Figure 3 shows the
performance images of the automatic phase- and frequency- [30530°]
shift correction procedure applied to the series of spectra with
SN = 10. Figures 4 and 5 show the performance images of
the correction procedure applied to the series of spectra with _
S/IN = 25 and 40, respectively. The images in Figs. 3A, 4A, Ft,1]  [21,21]
and 5A have been obtained using the regression m8del
b*PC, + b%PC,, + b%PC,, whereS represents the estimated C
signal. Exploiting this model the maximum number of itera-
tions is set by experience to 10: after 10 iterations it became
clear whether each spectrum is either aligned or totally mis-
aligned. Figures 3B, 4B, and 5B show the performance images
obtained withS = b%PC, + b%PC,, + b%PC; + b%PC,,. In
this case the maximum number of 15 iterations appeared to be
sufficient. Addition of the P¢ spectrum to the regression [F30%30°]
model increases the number of iterations before convergence is
reached. Figure 5C depicts the results of exploiting the regres-
sion modelS = b%PC, + b%PC,, + b%PC, + b%PC,, + f
btPC; + b%PC],. The second-derivative spectra of the ,PC [T.1]  [27,27]
and PG, of theS/N = 40 spectra show some signal and henceFIG. 5. Performance images f&N — 40. (A)5 = PG, + PG, + PC,.

and included in the regression model. Using this model, thg &= pc, + pc,, + PC, + PC,,. (C)S = PC, + PC,, + PC, + PC,, +
iteration procedure is stopped after 20 iterations. Evidently, tRe; + PC;,. For more details see Fig. 3.

[-60560°]
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adjusted spectra explains 97.8% of the total variance in the de
set. This indicates that for a greater part the unwanted spect
variations across the data set have been eliminated. The p
posed method ended up with unique solutions for all phase a
frequency shifts after four iterations. This is in contrast to thi
B&S method which produced phases and frequency shif
strongly varying iteration after iteration. Figure 6C shows th
PCr spectra of Fig. 6B after transformation of the phase- ar
FIG. 6. (A) Seven representativéP NMR spectra of the mouse Ske|eta|frequency-shift corrected PCr resonances to the common lin
muscle containing the phosphocreatine (PCr) resonance. The same spegiana of the data set. Clearly, the lineshape distortions of t
after phase- and frequency-shift correction (I_3) and after transformation of t zﬁr resonances are substantially reduced. TheoPte series
separate PCr resonances to the common lineshape of the data set (C). . . ) .
spectra are plotted on the same arbitrary scale. of spectra finally describes 98.5% of the total variance prese
in the data set. This means that the remaining signal-relat
lineshape variations have successfully been removed. Figure

the experimental noise in the data set determines the numbellgptrates the lineshape correction procedure for one particul
useful PG spectra defining the regression model. AppropriaféCr resonance line.
filtering of the noisy PG spectra would probably enable the The quantitation of the PCr resonances of the four mic
regression method to deal with larger phase and frequerhfifore correction and after correction for phase shifts, fre
shifts. However, in this study filtering is omitted since ouflu€ncy shifts, and lineshape distortions is shown in Fig. 8.
primary goal is to give only an impression of the sizes of thehows that the PCA quantitation method is more sensitive
phase and frequency shifts which can be removed at leastRijase and frequency variations than the curve-fitting approac
the novel method. Figures 3 to 5 illustrate that addition of thEhe peak areas of the spectra of M2 are underestimated (r
signal-related PG spectrum to the regression model maf;\tive broad lines) and those of M4 are overestimated (relati
improve the performance. On the other hand, more iteratiofdrow lines) before correction (Fig. 8A). However, after cor
are required until convergence is reached. This explains #i§&tion for phase shifts, frequency shifts, and lineshape distc
failure of one of the five experiments for some combinations §Pns the peak areas of both series have become of the sa
phase- and frequency-shift intervals (e.g., Figs. 4A and 4@fder of magnitude as those of M1 and M3 (Fig. 8B). As ¢
Aw ~ [—27, 21]). In these cases the iterative procedure almokgsult, the quantitation results have become similar to tho:
had adjusted all phase and frequency shifts toward negligitigtained with the nonlinear curve-fitting approach. Althougt
small values. However, the predefined maximum number e curve-fitting approach cannot accommodate lineshape ve
iterations did not allow convergence of the correction meth@ions, only minor changes in the peak area estimations &
for all shifted spectra. observed after correction for phase and frequency variatio
In other words, the performance images in Figs. 3-5 give &nigs. 8C and 8D). These findings demonstrate that with tt
impression of the phase and frequency shifts of a LorentziB¢A quantitation method, which operates on the comple:
lineshape which can be treated with the proposed correctigffies of PCr resonances simultaneously, similar good resu
procedure. Obviously, addition of the PGpectrum enables aré obtained in much less time after appropriate signal corre
the automatic correction procedure to correct for, in particuldton-
larger phase shifts in the presence of small frequency shifts.

DISCUSSION

Experimental Data
P The new method presented in this paper, i.e., the combin

PCr spectra obtained from the four different mice M1 to M#ion of PCA and linear regression, is a powerful method fo
show considerable line shift and line distortion effects, whileemoving phase and frequency shifts across a large series
the phases of the PCr resonances are rather similar (Fig. 6&ihgle spectral lines in an automated way. All separate pha
The PG of the series of spectra describes 91.6% of the-vadnd frequency shifts are simultaneously identified and removi
ance in the complete data set. The estimated noise varianc&am the series of spectra in a model-independent way witho
1.6%. requiring any user interaction. Compared to the original prc

Figure 6B shows the PCr spectra of Fig. 6A after phase- apdsed method1() the current method, as performed on sim:
frequency-shift correction using = b%PC, + b%PC,, + ulated data, shows improved precision and robustness: accur
b%PC; + b%PC,, (i.e., using the signal-containing PGpee and unique phase solutions and frequency-shift solutions b
tra). It depicts that all resonances are accurately phased andyamed the discrete spectral resolution are obtained. Furthermo
shifted to the mean spectral position of the data set, irrespectilie proposed regression method enables the user to exp
of the lineshape distortions across the series of spectra. Amare than three (signal-related) RP@erived spectra to correct
result, the PElineshape of the series of phase- and frequencipr the individual phase and frequency shifts. This allows th
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A ' ' ' ' ‘ frequency errors often occurring durimg vivo NMR experi-

| | ments. After these corrections all PCr resonances could
described by one arbitrary lineshape function. Variations i
PCr amplitude can then be assessed by the PCA quantitati
method for fast and model-free quantitation of a complet
series of resonances.

Besides these improvements, it is also important to notic
the simplicity and flexibility of the proposed regression
method. For example, the new correction method is no long
necessarily committed to PCA. Instead of the, B@ectrum the
mean spectrum of the data set or any other proper referer
spectrum can also be used. In fact, each peak with a phe
and/or frequency offset can be shifted to any appropriate re
erence peak. Once a reference peak is defined, all sepat
phase and frequency shifts are directly acquired in an elege
way using ordinary regression. Apart from this, each relevai
. . . s L spectrum, derived from the R®@r any other reference spec
trum, can easily be included in the regression model for fittin
adequately each shifted spectrum. This offers the user t
| 1 possibility of extending the analysis to more complex spectr:
In addition to phase- and frequency-shift variations linewidtt

peak area

0 5 10 15 20 25 0 5 10 15 20 25

spectrum number in time series spectrum number in time series

L L 1 L L

C
FIG. 7. Transformation of a disrupted PCr lineshape to the common line-

shape of the data set. (A) Original spectrum (solid line) and calculated spectrum
(dashed line) obtained with linear regression and PCA. The calculated spectrum is
the sum of the three Rdineshapes (dotted lines) which vary in line position and§
in amplitude. (B) Original spectrum (solid line) and transformed spectrum (dashgjd
line). The transformed PCr spectrum is obtained in two steps. First, the three PE>
lineshapes in (A) are subtracted from the original spectrum. Then, the resultifiy
signal is added to the three Pleshapes positioned at the spectral position of the
common lineshape of the data set.

novel method to correct for larger phase- and frequency-shift

variations across series of SpeCtra. From the time seri@s of spectrum number in time series spectrum number in time series
4 .

vivo “P NMR_ spectra, phase and frequency shifts of the_FIG. 8. Quantitation of time series of PCr resonances of the muscle of fo

phosphocreatine resonance could successfully be removediffarent mice M1 to M4 using PCA (A, B) and nonlinear curve fitting (C, D).

the presence of considerable lineshape distortions. The rem&lpantitation before correction (A) and after automatic correction for phas

ing Iineshape distortions were subsequently removed using ﬂli@ts frequency shifts, and lineshape variations (B) using PCA. Quantitatic

| . thod. Th Its of th . tal dgﬁfore correction (C) and after automatic correction for phase shifts, frequen
novel regression method. € resufts ot the experimenta ﬁts, and lineshape variations (D) using nonlinear curve fitting based on tt

demonstrate that postprocessing using the proposed correcti@hplex Lorentzian model lineshape function. Ischemia was applied betwe
methods compensates for unwanted, but inevitable, phase atdtra 4 and 18.
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variations are also usually observed in (large) NMR spectral mondt, Retrieval of frequencies, amplitudes, damping factors, and
data sets. phases from time-domain signals using a least-squares procedure,

I J. Magn. Reson. 61, 465-481 (1985).
The combination of PCA (or a proper reference spectrum agn. eson (1985)
H. Barkhuysen, R. de Beer, and D. van Ormondt, Improved algo-

and linear regression will make it also possible to correct . L . o .

. . : . - rithm for noniterative time-domain model fitting to exponentially
S'mU|tan30US|y for phase, frequency Sh_lft_, and |Ii’18W|dih varl-  damped magnetic resonance signals, J. Magn. Reson. 73, 553-557
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