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A new model-free method is presented that automatically cor-
rects for phase shifts, frequency shifts, and additional lineshape
distortions of one single resonance peak across a series of in vivo
NMR spectra. All separate phase and frequency variations are
quickly and directly derived from the common lineshape in the
data set using principal component analysis and linear regression.
First, the new approach is evaluated on simulated data in order to
quantitatively assess the phase and frequency shifts which can be
removed by the proposed correction procedure. Subsequently, the
value of the method is demonstrated on in vivo 31P NMR spectra
from skeletal muscle of the hind leg of the mouse focusing on the
phosphocreatine resonance which is distorted by the experimental
procedure. Phase shifts, frequency shifts, and lineshape distortions
with respect to the common lineshape in the spectral data set
could successfully be removed. © 2000 Academic Press

Key Words: in vivo NMR; automatic correction; phase and
requency shifts; lineshape distortions; principal component
nalysis.

INTRODUCTION

In vivo NMR spectroscopy examinations may result in la
ata sets of spectra, e.g., spectra from time series or
pectroscopic imaging experiments. Separate analysis o
pectrum is cumbersome while automated analysis of com
ata sets may pose some serious problems. Phase, line po

inewidth, and lineshape of resonance peaks are not ide
or all spectra due to experimental variations. This may c
roblems for peak integral estimations by various least-sq
pproaches proposed for this purpose (1–4). Lineshape varia

tions throughout series of spectra hamper the correct pea
estimation since the least-squares approaches assume o
ticular model lineshape function (Lorentzian, Gaussian). P
and frequency shifts throughout spectra demand user in
tion to perform accurate quantitation on complete seriesin
vivo NMR spectra. Spurious spectral variations may also c
problems for classification purposes using pattern recogn
methods like discriminant analysis and principal compo
analysis (PCA) (5). They may lead to misinterpretation a
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misclassification of the spectra because they will contribu
the nonnoisy part of the signal and hence will be describe
the signal-related principal components (6). Thus, prior re
moval of these kind of spectral variations may be an impo
preprocessing step for both the accurate classification an
automatic quantitation of (large) spectral data sets.

First attempts have been made on the fast and auto
quantitation of completein vivo NMR spectral data sets (7–9).
These studies have shown that PCA is a promising tech
for this purpose, that is, PCA estimates more quickly and m
precisely the peak integral of a series of noisy peaks
least-squares approaches operating on each spectrum
rately. However, the PCA quantitation method is sensitiv
phase and frequency variations throughout the spectral da
it is limited to spectral data sets containing one or m
spectrally isolated peaks which may only vary in amplitud

Therefore, Brown and Stoyanova developed a PCA-b
correction method which automatically eliminates phase
frequency shift variations of one single resonance peak a
a series of spectra (10). Their method is especially dedicated
the analysis of large spectral data sets because it sim
neously determines all phase and frequency shifts acros
data set within one calculation step. Moreover, the shifts
derived in a model-independent way, i.e., without assum
particular model lineshape function. They have tested
method both on simulated and on experimental data. T
results on simulated data have demonstrated that it can
rately handle phase shifts up to 45° and frequency shifts o
than half a linewidth. Their experimental results depict
other spectral variations than phase and frequency shifts
lineshape variations, could not be compensated for by u
their approach.

This paper deals with an improved method for quic
removing phase and frequency shifts in large spectral data
It is a simple, robust, and flexible method which comb
PCA and linear regression to obtain all separate phase
frequency shifts within one calculation step. Phase and
quency shifts are determined unambiguously and precise
1090-7807/00 $35.00
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36 WITJES ET AL.
(large) spectral data sets. Furthermore, larger phase shif
to 60°) and larger frequency shifts (up to two times the linew
can easily be removed. An additional advantage of the
method is that it can deal with lineshape variations across a
of spectral lines. The new method has been tested on sim
data as well as on time series ofin vivo 31P NMR spectra.

THEORY

General

Each complex spectrumSk (without noise) in a large seri
f spectra which have the same lineshape function, bu
ossibly shifted in phase and/or frequency, can be describ

Sk~v j! 5 Ake
iwkf~v j 1 Dvk!, [1]

here Sk(v j) is the discrete signal of thekth spectrum a
frequencyv j , Ak is the amplitude of spectrumk, i 5 =(21),
w k is the phase offset of spectrumk, f(v j) is the comple
lineshape function, andDv k is the frequency offset of spe-
trumk. The basic idea is to expandf(v) in a Taylor series (10).

quation [1] then becomes

Sk~v j! 5 Ake
iwkH f~v j! 1 U df

dvU
v j

Dvk

1
1

2 U d2f

dv 2U
v j

Dv k
2 1 · · ·J , [2]

where the third and higher order terms are neglected fo
sake of convenience. The complex terms can be rewritte

eiwk 5 coswk 1 i sin wk [3a]

f~v j! 5 fR~v j! 1 if I~v j!, [3b]

where fR(v j) and f I(v j) are the real and imaginary parts
f(v j). After substitution of Eqs. [3a] and [3b] in Eq. [2], t
following expression for the real (physical) part of the sign
obtained:

Sk
R~v j! 5 AkHcoswk fR~v j! 2 sin wk f I~v j!

1 Dvkcoswk f9R~v j! 2 Dvksin wk f9I~v j!

1
1

2
Dv k

2coswk f 0R~v j!

2
1

2
Dv k

2sin wk f 0I~v j! 1 · · ·J , [4]

whereSk
R(v) is the real part ofSk(v), f9R(v) is the first deriv-

ative of fR(v), and so on. Equation [4] can be rewritten as
(up
)
w
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Sk
R~v j! 5 bk,1fR~v j! 1 bk,2 f I~v j! 1 bk,3f9R~v j! 1 bk,4f9I~v j!

1 bk,5 f 0R~v j! 1 bk,6 f 0I~v j! 1 · · ·, [5]

where bk,i is the i th Taylor coefficient of spectrumk. The
second and third Taylor coefficients (bk,2 andbk,3) contain the
phase and frequency shift information of each spectruk,
respectively,

2bk,2

bk,1
5

Aksin wk

Akcoswk
5 tan wk, [6a]

bk,3

bk,1
5

DvkAkcoswk

Akcoswk
5 Dvk. [6b]

Brown and Stoyanova (B&S) Method for Removing Phas
and Frequency Shifts

A short description of the existing method of Brown a
Stoyanova is given below since its performance will be c
pared with that of our novel method. For further details
reader is referred to Ref. (10).

Brown and Stoyanova apply principal component ana
11) to series of real-valued spectra containing phase
requency shifts. They use the first principal component (1)
f the series of spectra to estimate the real part of the unk
esonance lineshape function in the data set. They obs
hat at least two more additional PC spectra of the dat
ontain the signal-related variance due to the phase an
uency shift differences among the spectra. Therefore, the

he second and third PC loading spectra of the series of sp
PC2 and PC3) to estimate the phase and frequency shift of e

individual spectrum. A transformation matrix is calcula
which transforms the coordinate system defined by (PC1, PC2,
PC3) to a new coordinate system defined by (PC1, PC91, PC1,I).
Subsequently, the scores of each spectrum on the PC2 and PC3

spectra are projected onto this new coordinate system ex
ing the above transformation matrix. These projections (sc
T) are used to approximate each spectrumk and its (possible
phase and frequency shifts according to

Sk
R~v j! 5 TkPC1

PC1~v j! 1 TkPC1, I
PC1,I~v j! 1 TkPC91

PC91~v j!,

[7]

ith (see Eqs. [6a] and [6b])

tan wk 5
2TkPC1, I

TkPC1

and Dvk 5
TkPC91

TkPC1

. [8]

In this way, phase and frequency shifts across a seri
resonances are simultaneously estimated via a target tra
mation of the PC2 and PC3 score vectors.
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37AUTOMATIC CORRECTION IN LARGE SPECTRAL DATA SETS
Novel Method for Removing Phase and Frequency Shifts

In this paper we propose the application of linear regres
to derive the phase and frequency shifts directly from the1
spectrum instead of deriving these from the PC2 and PC3

spectra. In this way, the data transformation is circumve
which obviously benefits the high precision and robustne
the novel method. In addition, the use of linear regres
easily allows the incorporation of higher order terms of
Taylor series expansion (Eq. [5]) in order to extend the si
approximation to spectra containing larger phase and
quency shifts. If the shifts are relatively large, second
higher order terms in the Taylor series will be neede
approximate more accurately the phase- and frequency-s
spectra. Then, the second and third Taylor coefficients b
reflect the true phase and frequency shifts of each spec
respectively.

The proposed phase- and frequency-shift correction p
dure is as follows.

Step 1: PCA is applied to the series of real-valued spect
obtaining the PC1 spectrum of the data set.

Step 2: Using linear regression, each spectrumk is approx
imated by a linear combination of the PC1, the PC1,I, and one
or more of their signal-containing derivatives:

Sk
R~v j! 5 bk,1PC1~v j! 1 bk,2PC1,I~v j!

1 bk,3PC91~v j! 1 bk,4PC91,I~v j!

1 bk,5PC01~v j! 1 bk,6PC01,I~v j! 1 · · · [9]

With the classical least-squares solution the coefficien
Eq. [9] for all spectrak are obtained within one calcu
tion step.

Step 3: The numerical values for the phase and frequ
shifts of each spectrumk in the data set are obtained from
regression coefficients on the PC1,I and the PC91, spectra, re-
pectively (see Eqs. [6a] and [6b]),

tan wk 5 2
bk,2

bk,1
,

Dvk 5
bk,3

bk,1
. [10]

Step 4: Finally, the spectra are corrected for the calcu
shifts. The phase corrections are applied in the frequ
domain by multiplying the spectra with a factor exp(2iw k),
while the frequency shift corrections are applied in the
domain. This is done by an inverse FFT (fast Fourier tr
form) of the spectra, multiplying each time signal w
exp(2iDv kt j) and transforming them back using FFT. In t
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way, frequency shift corrections exceeding the actual
quency resolution can be applied.

By repeating the whole procedure (steps 1–4) the spect
updated until convergence occurs. After convergence, the2
and PC3 spectra only describe noise, indicating that the sp
have been corrected for the phase and frequency shifts (t
PC1 approximatesfR well).

Novel Method for Additional Removal of Lineshape
Variations

After phase and frequency shift correction each reson
line is phased and is shifted to the same spectral position
data set. However, especially within vivo NMR signals, the
esonance lineshape function may be still distorted. Su
istorted line can be described by a sum of undistorted
ith varying amplitudes and slightly different frequencies.
ropose here a simple and model-free method to quickl
ove lineshape distortions in large spectral data sets. T
one by fitting each (distorted) single resonance line to the
f a number of PC1 lineshapes of the complete data set wh

may vary in amplitudeAi and in frequency offsetDv i .

Sk~v j! 5 O
i51

n

Ak,iPC1~v j 1 Dvk,i!, [11]

here PC1(v j) is used to approximate the underlying un-
fected resonance lineshape. Here,n is the number of PC1 lines,
i denotes thei th PC1 line with amplitudeAi and frequenc
offset Dv i , andSk denotes the real (measured) spectrum.
problem is to find the amplitudes and frequency offsets fro
limited number of PC1 lines for each spectrumk.

The proposed correction procedure for lineshape varia
is as follows.

Step 1: Application of PCA to the series of phase-
frequency-shift corrected spectra for obtaining PC1(v j).

Step 2: Based on the Taylor expansion discussed in
previous section, a first-order Taylor approximation of e
spectrumk dedicated to the above problem is described:

Sk~v j! 5 O
i51

n

ck,iPC1~v j 1 Dvk,i! 1 O
i51

n

dk,iPC91~v j 1 Dvk,i!.

[12]

set of n starting frequency offsets is subjected to then PC1

lines for each spectrumk.

Step 3: Equation [12] is solved using linear regression.
coefficientsck,i contain the amplitude information of each P1
line, while the frequency offset adjustmentd of each PC1 line
is acquired in the same way as shown in Eq. [6b]:
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38 WITJES ET AL.
dDvk,i 5
dk,i

ck,i
. [13]

Step 4: The PC1 lines are updated with the calculatedd-val-
ues and linear regression is started again. In an iterative w
spectra are simultaneously approximated by the sum ofn PC1

lines with varying amplitudes and frequency offsets for e
spectrumk.

Step 5: After convergence, the removal of the peak di
tions is accomplished by first subtracting the calculated s
trum from the measured spectrum. Then, then PC1 lines

roducing the calculated resonance line are shifted to
pectral position of the common lineshape of the data set
he PC1 lineshape withDv 5 0). Finally, they are added to t
emaining signal.

In this way, a major part of the lineshape variations ac
he data set is quickly eliminated by transforming simu
eously all distorted resonance lines to the common PC1 line-
hape of the data set.

EXPERIMENTAL

Data Processing

All data processing was performed using Matlab 4.2c
ware (The Mathworks, Inc.).

Simulated Data

Simulated data were generated to assess phase an
quency shift removal by the proposed method and by
existing B&S method (10). In the simulation study 100 spec
of 512 data points were generated. Each spectrum conta
single Lorentzian line centered at position 256 with linew
t 5 30 data points and amplitudeA. Gaussian-distribute
white noise (m 5 0, s 5 1) was added to the spectra. T
procedure was repeated several times in order to gen
various simulated data sets. Each simulated data set wa
jected to one amplitude variation (A 5 20, 50, or 80, in

rbitrary units) and to two uniform distributions of phase
requency shifts. In this way, each spectrum in a data set o
pectra contained a single Lorentzian line of some signa
oise ratio (S/N, defined asA/ 2*s) varying independently t

a certain degree in phase and in spectral position. Figu
shows five spectra from one simulated example data se
S/N 5 25 which vary in phase (between245° and 45°) and i
ine position (between 2562 t/2 and 2561 t/2).

Experimental Data

The experimental data set consists of a total of 108in vivo
31P NMR spectra of the skeletal muscle of the hind leg of
mice (M1 to M4), acquired at 7 T (12). During one measur
ment session 4 spectra were acquired during a rest perio
spectra under ischemic conditions, i.e., occlusion of the
all
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limb, and 9 spectra during recovery from ischemia. The
resolution was 108 s (n 5 12, TR5 9 s). The occlusion by
diaphragm plate caused displacements of the leg in the co
subsequently changed the shimming. This resulted in shift
asymmetric broadening of the resonance lines. The sp
region around the single phosphocreatine (PCr) resonanc
cut from the spectra and was first subjected to the novel p
and frequency-shift correction procedure. The PCr linesha
expected to be rather insensitive to biochemical changes
hence, its variations throughout the time series are entirel
to instrumental or unwanted experimental variations (13).

herefore, the PCr peak is often used as a reference pe
liminating undesired phase and frequency shifts in the
idual 31P NMR spectra. After removal of the undesired ph

and frequency shifts additional lineshape distortions wer
moved from the PCr resonances.

Correction for Phase and Frequency Shifts

The proposed phase- and frequency-shift correction p
dure starts with a PCA of the series of spectra using the
(singular value decomposition) algorithm. The SVD algori
is applied to the data matrix in which the rows represen
spectra and the columns represent the spectral frequenc
calculates the first principal component (PC1) spectrum nor-
malized to unit length. The imaginary part of the PC1 spectrum
(PC1,I) is obtained by the Hilbert transform, while the deri-
tives of the PC1 and its imaginary part are obtained by num-
cal differentiation. Subsequently, the PC1, the PC1,I, and one o

FIG. 1. Illustration of the phase- and frequency-shift correction proce
(A) Five simulated spectra showing different phases and frequency offse
Same spectra after one cycle of the correction procedure. (C) Same
after three cycles of the correction procedure.
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39AUTOMATIC CORRECTION IN LARGE SPECTRAL DATA SETS
more of their derivative spectra showing signal-related in
sities are included in the regression analysis. After li
regression, each spectrumk is corrected for the calculat
phase and frequency shifts (see Theory). The corrected s
are once again subjected to the correction procedure un
shift corrections become negligibly small, i.e., phase co
tions ,0.1° and frequency-shift corrections,0.1 data poin

ne full iteration cycle of the automatic correction proced
nvolving 100 spectra of 512 data points takes about 7 s on a
UN Ultra 10 workstation.

uantitative Simulation Study

Phase- and frequency-shift estimations in a series of
imulated spectra were evaluated as a function of the size
hase and frequency shifts, theS/N of the spectra investigate
nd the PC1 (signal-related) spectra included in the regres

model. The existing B&S method was excluded from this s
due to its poor convergence characteristics. However, one
assume that since the existing method indirectly uses the1,
PC1,I, and PC91 spectra for the signal approximation (see T-
ory), the size of the phase and frequency shifts which ca
removed by the existing method is in potential similar to th
which can be removed by the proposed regression m
using only the PC1, PC1,I, and PC91 spectra. In the quantitativ
simulation study the uniform phase shift distribution applie
a data set of 100 undistorted spectra varied from [25°, 5°] up
to [290°, 90°] in which the interval size varied in steps of
n both directions. The applied frequency shift distribu
iffered from [2t/10, t/10] up to [23t, 3t] in steps oft/10 in

both directions. For each combination of one phase and
frequency shift interval five independent data sets were g
ated and, subsequently, were evaluated by the propose
rection procedure. It was decided that the novel corre
procedure failed if 1 or more of the 100 spectra was not t
accurately in phase and/or in frequency. This criterion cou
handled since the application of larger phase and frequ
shifts yielded more and more deteriorated spectra. If all
points in the performance plot depicting the true versus
mated shifts followed a straight line with slope equal to 1,
in Fig. 2A, then the number of successful corrections
increased by 1. If not, the correction procedure had failed
decision as to whether the correction procedure had succ
or failed was based on the variance of the data points ar
the straight line. If the variance exceeded a predefined m
mum threshold level then the correction procedure had fa
This decision criterion was sensitive enough to detect 1
spectrum among 99 well-adjusted spectra. However, diff
threshold levels were defined for the differentS/N data set
because it was found that the precision of estimation o
separate phase and frequency shifts decreased with decr
S/N of the spectra.
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Additional Correction for Lineshape Variations

The removal of significant lineshape distortions has b
applied to the series of PCr resonances after phase- an
quency-shift correction. In our application study three1

lines were sufficient for accurately fitting each spectrum to
[11]: low-amplitude values were obtained for additional P1

lines with calculated frequency offsets significantly differ
from those already acquired. The initial frequency off
subjected to the three PC1 lines were systematically varied
be sure that each distorted resonance line is fitted well. A
of 11 experiments were performed, each starting with diffe
initial frequency offsets (see Table 1). After convergence
best of the 11 calculated spectra for each spectrum was se
using the minimum Euclidean distance between the PCr
trum and each of these calculated spectra. Only a rest
spectral region was considered to prevent the possible
baseline noise. The best fit to each spectrum was us
remove the lineshape distortions in the way which is desc
under Theory.

Verification of Signal Corrections Using PCA Quantitation

The complete series of PCr resonances was quant
before and after correction for phase shifts, frequency s
and lineshape variations using the alternative PCA quantit
method. The application of the PCA method is only justifie

FIG. 2. Performance of the proposed correction procedure and the ex
correction procedure on the entire example data set. (A) True versus es
phase (left) and true versus estimated frequency offset (right) for each
vidual spectrum using the novel method. (B) True versus estimated phas
and true versus estimated frequency offset (right) for each individual spe
using the B&S method.
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40 WITJES ET AL.
the PCr resonance lines throughout the data set have
released from phase and frequency variations. Therefo
order to verify the signal corrections made, the quantita
results before and after correction are compared with t
obtained with a standard nonlinear curve-fitting approach u
the complex Lorentzian lineshape function. To compare
quantitation results of the four mice, the peak areas in ea
the four time series of spectra were multiplied by a fa
which equated the peak areas of the first spectra in each
four series. This was done in order to compensate for d
ences between the four mice due to the amount of mus
tissue which was measured.

RESULTS

Simulated Data

Figure 1 illustrates the proposed phase- and frequency
correction procedure for five spectra (Fig. 1A) of a data s
100 simulated spectra (S/N 5 25). Also shown are the spec
after the first phase- and frequency-shift correction (Fig.
and after three iterative corrections (Fig. 1C). In this case
iterations appear to be sufficient to align the spectra bo
phase and in frequency. In this particular example, the re
sion model was defined by the signal-containing PC1 spectra
i.e., the PC1, the imaginary part of the PC1 (PC1,I), and thei
first-derivative spectra (PC91 and PC91,I). The second and high
derivative spectra are omitted from the regression ana
because they only contain noise. Hence, they did not contr
to the signal approximation.

The performance of the automatic correction procedur
the entire data set is shown in Fig. 2A. It clearly demonst
that all spectra are well-adjusted in phase and in frequ
after three iterations. The PC1 of the series of corrected spec

TABLE 1
Fitting of the Complete Series of PCr Resonances Using Differ-

nt Initial Combinations for the Three Frequency Shifts Dv1,
Dv2, and Dv3

Experiment
number

Dv1

(data points)
Dv2

(data points)
Dv3

(data points

1 0 0 0
2 22 0 2
3 24 0 4
4 26 0 6
5 28 0 8
6 210 0 10
7 212 0 12
8 214 0 14
9 216 0 16

10 218 0 18
11 220 0 20

Note. The shifts are expressed in real data points; each PCr spe
consists of a total of 256 data points.
en
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describes 98.4% of the total spectral variance. Note the
precision of the frequency-shift correction which exceeds
discrete spectral resolution. Figure 2B shows the results o
same data set based on the existing B&S method. Thes
obtained after applying a certain correction factor (R. S
anova, personal communication). It depicts that the prec
of the phase- and frequency-shift estimations is less com
with those of the novel method. This is confirmed by the1

of the series of corrected spectra which only describes 9
of the total data variance. In addition, Fig. 2B shows the
results of the existing method obtained after two iterati
However, after the next iteration the prediction of the sh
become worse, while a few iterations later again good app
imations are obtained. In case linear regression is used
(and more precise) phase- and frequency-shift solution
obtained after three iterations. This is also the case when
the PC1, PC1,I, and PC91 spectra are included in the regress
model.

The results of the quantitative simulation study are sum
rized in the gray level images plotted in Fig. 3 to Fig. 5. E
so-called performance image is a 183 30 intensity matrix in
which the pixel intensity varies between 0 and 5, represe

FIG. 3. Performance images showing the size of the phase and freq
shifts which can be removed by the proposed correction procedure;S/N 5 10,
t 5 linewidth. (A) Ŝ 5 PC1 1 PC1,I 1 PC91. (B) Ŝ 5 PC1 1 PC1,I 1 PC91 1
PC91,I. White image regions denote a 100% performance.

m
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41AUTOMATIC CORRECTION IN LARGE SPECTRAL DATA SETS
the number of successful corrections applied to the five
pendently generated sets of 100 spectra. Figure 3 show
performance images of the automatic phase- and frequ
shift correction procedure applied to the series of spectra
S/N 5 10. Figures 4 and 5 show the performance image
the correction procedure applied to the series of spectra
S/N 5 25 and 40, respectively. The images in Figs. 3A,
and 5A have been obtained using the regression modeŜ 5
b*1PC1 1 b*2PC1,I 1 b*3PC91, whereŜ represents the estimat
signal. Exploiting this model the maximum number of ite
tions is set by experience to 10: after 10 iterations it bec
clear whether each spectrum is either aligned or totally
aligned. Figures 3B, 4B, and 5B show the performance im
obtained withŜ 5 b*1PC1 1 b*2PC1,I 1 b*3PC91 1 b*4PC91,I. In
this case the maximum number of 15 iterations appeared
sufficient. Addition of the PC91,I spectrum to the regressi
model increases the number of iterations before converge
reached. Figure 5C depicts the results of exploiting the re
sion modelŜ 5 b*1PC1 1 b*2PC1,I 1 b*3PC91 1 b*4PC91,I 1
b*5PC01 1 b*6PC01,I. The second-derivative spectra of the P1

and PC1,I of theS/N 5 40 spectra show some signal and he
and included in the regression model. Using this model
iteration procedure is stopped after 20 iterations. Evidently

FIG. 4. Performance images forS/N 5 25. (A) Ŝ 5 PC1 1 PC1,I 1 PC91.
B) Ŝ 5 PC1 1 PC1,I 1 PC91 1 PC91,I. For more details see Fig. 3.
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more terms are added to the regression model, the more
ations are required until convergence is reached.

Figures 3–5 depict that the white image regions corresp
ing to a 100% performance (thus with a pixel intensity equ
5) are enlarged if the signal-related PC91,I spectrum is incorpo-
rated in the regression model. On the other hand, incorpor
of the PC01 and PC01,I spectra into the regression model does
improve significantly the performance of the correction pr
dure (Figs. 5b–5c). This was expected since these se
derivative spectra show a very lowS/N. This demonstrates th

FIG. 5. Performance images forS/N 5 40. (A) Ŝ 5 PC1 1 PC1,I 1 PC91.
B) Ŝ 5 PC1 1 PC1,I 1 PC91 1 PC91,I. (C) Ŝ 5 PC1 1 PC1,I 1 PC91 1 PC91,I 1
C01 1 PC01,I. For more details see Fig. 3.
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42 WITJES ET AL.
the experimental noise in the data set determines the num
useful PC1 spectra defining the regression model. Approp
filtering of the noisy PC1 spectra would probably enable
egression method to deal with larger phase and frequ
hifts. However, in this study filtering is omitted since
rimary goal is to give only an impression of the sizes of
hase and frequency shifts which can be removed at lea

he novel method. Figures 3 to 5 illustrate that addition o
ignal-related PC91,I spectrum to the regression model m

improve the performance. On the other hand, more itera
are required until convergence is reached. This explain
failure of one of the five experiments for some combination
phase- and frequency-shift intervals (e.g., Figs. 4A and
Dv ' [22t, 2t]). In these cases the iterative procedure alm
had adjusted all phase and frequency shifts toward negl
small values. However, the predefined maximum numbe
iterations did not allow convergence of the correction me
for all shifted spectra.

In other words, the performance images in Figs. 3–5 giv
impression of the phase and frequency shifts of a Loren
lineshape which can be treated with the proposed corre
procedure. Obviously, addition of the PC91,I spectrum enable
the automatic correction procedure to correct for, in partic
larger phase shifts in the presence of small frequency sh

Experimental Data

PCr spectra obtained from the four different mice M1 to
show considerable line shift and line distortion effects, w
the phases of the PCr resonances are rather similar (Fig
The PC1 of the series of spectra describes 91.6% of the-

nce in the complete data set. The estimated noise varia
.6%.
Figure 6B shows the PCr spectra of Fig. 6A after phase

requency-shift correction usingŜ 5 b*1PC1 1 b*2PC1,I 1
b*3PC91 1 b*4PC91,I (i.e., using the signal-containing PC1 spec-
tra). It depicts that all resonances are accurately phased a
shifted to the mean spectral position of the data set, irrespe
of the lineshape distortions across the series of spectra.
result, the PC1 lineshape of the series of phase- and freque

FIG. 6. (A) Seven representative31P NMR spectra of the mouse skele
muscle containing the phosphocreatine (PCr) resonance. The same
after phase- and frequency-shift correction (B) and after transformation
separate PCr resonances to the common lineshape of the data set (
spectra are plotted on the same arbitrary scale.
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adjusted spectra explains 97.8% of the total variance in the
set. This indicates that for a greater part the unwanted sp
variations across the data set have been eliminated. Th
posed method ended up with unique solutions for all phas
frequency shifts after four iterations. This is in contrast to
B&S method which produced phases and frequency s
strongly varying iteration after iteration. Figure 6C shows
PCr spectra of Fig. 6B after transformation of the phase-
frequency-shift corrected PCr resonances to the common
shape of the data set. Clearly, the lineshape distortions o
PCr resonances are substantially reduced. The PC1 of the serie

f spectra finally describes 98.5% of the total variance pre
n the data set. This means that the remaining signal-re
ineshape variations have successfully been removed. Fig
llustrates the lineshape correction procedure for one parti
Cr resonance line.
The quantitation of the PCr resonances of the four m

efore correction and after correction for phase shifts,
uency shifts, and lineshape distortions is shown in Fig.
hows that the PCA quantitation method is more sensitiv
hase and frequency variations than the curve-fitting appr
he peak areas of the spectra of M2 are underestimated
tive broad lines) and those of M4 are overestimated (rel
arrow lines) before correction (Fig. 8A). However, after c
ection for phase shifts, frequency shifts, and lineshape d
ions the peak areas of both series have become of the
rder of magnitude as those of M1 and M3 (Fig. 8B). A
esult, the quantitation results have become similar to t
btained with the nonlinear curve-fitting approach. Altho

he curve-fitting approach cannot accommodate lineshape
tions, only minor changes in the peak area estimation
bserved after correction for phase and frequency varia
Figs. 8C and 8D). These findings demonstrate that with
CA quantitation method, which operates on the com
eries of PCr resonances simultaneously, similar good re
re obtained in much less time after appropriate signal co

ion.

DISCUSSION

The new method presented in this paper, i.e., the com
tion of PCA and linear regression, is a powerful method
removing phase and frequency shifts across a large ser
single spectral lines in an automated way. All separate p
and frequency shifts are simultaneously identified and rem
from the series of spectra in a model-independent way wi
requiring any user interaction. Compared to the original
posed method (10) the current method, as performed on s
ulated data, shows improved precision and robustness: ac
and unique phase solutions and frequency-shift solution
yond the discrete spectral resolution are obtained. Further
the proposed regression method enables the user to e
more than three (signal-related) PC1-derived spectra to corre
for the individual phase and frequency shifts. This allows
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43AUTOMATIC CORRECTION IN LARGE SPECTRAL DATA SETS
novel method to correct for larger phase- and frequency
variations across series of spectra. From the time seriesin
vivo 31P NMR spectra, phase and frequency shifts of
phosphocreatine resonance could successfully be remov
the presence of considerable lineshape distortions. The re
ing lineshape distortions were subsequently removed usin
novel regression method. The results of the experimenta
demonstrate that postprocessing using the proposed corr
methods compensates for unwanted, but inevitable, phas

FIG. 7. Transformation of a disrupted PCr lineshape to the common
hape of the data set. (A) Original spectrum (solid line) and calculated spe
dashed line) obtained with linear regression and PCA. The calculated spec
he sum of the three PC1 lineshapes (dotted lines) which vary in line position
n amplitude. (B) Original spectrum (solid line) and transformed spectrum (d
ine). The transformed PCr spectrum is obtained in two steps. First, the thre1

lineshapes in (A) are subtracted from the original spectrum. Then, the re
signal is added to the three PC1 lineshapes positioned at the spectral position o
ommon lineshape of the data set.
ift

e
in

in-
he
ta

tion
nd

frequency errors often occurring duringin vivo NMR experi-
ments. After these corrections all PCr resonances cou
described by one arbitrary lineshape function. Variation
PCr amplitude can then be assessed by the PCA quant
method for fast and model-free quantitation of a comp
series of resonances.

Besides these improvements, it is also important to n
the simplicity and flexibility of the proposed regress
method. For example, the new correction method is no lo
necessarily committed to PCA. Instead of the PC1 spectrum th
mean spectrum of the data set or any other proper refe
spectrum can also be used. In fact, each peak with a
and/or frequency offset can be shifted to any appropriate
erence peak. Once a reference peak is defined, all se
phase and frequency shifts are directly acquired in an el
way using ordinary regression. Apart from this, each rele
spectrum, derived from the PC1 or any other reference spe-
trum, can easily be included in the regression model for fi
adequately each shifted spectrum. This offers the use
possibility of extending the analysis to more complex spe
In addition to phase- and frequency-shift variations linew

FIG. 8. Quantitation of time series of PCr resonances of the muscle o
different mice M1 to M4 using PCA (A, B) and nonlinear curve fitting (C,
Quantitation before correction (A) and after automatic correction for p
shifts, frequency shifts, and lineshape variations (B) using PCA. Quanti
before correction (C) and after automatic correction for phase shifts, freq
shifts, and lineshape variations (D) using nonlinear curve fitting based o
complex Lorentzian model lineshape function. Ischemia was applied be
spectra 4 and 18.
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44 WITJES ET AL.
variations are also usually observed in (large) NMR spe
data sets.

The combination of PCA (or a proper reference spect
and linear regression will make it also possible to cor
simultaneously for phase, frequency shift, and linewidth v
ations across a series of spectra containing a single line
function. This will be addressed in a forthcoming paper. A
spectral regions containing two or more (overlapping) r
nance lines can be considered. Each spectrum will the
fitted to two or more reference lines which each may var
amplitude and/or in phase and/or in frequency.

CONCLUSIONS

The proposed method is a promising preprocessing
nique for the analysis of large spectral data sets, both
spectral quantitation and for classification purposes. It rem
unwanted phase shifts, frequency shifts, and additional
shape distortions throughout the spectral data set within
calculation step. Because it is a simple, robust, and fle
method it can easily be extended to the analysis of m
complex spectra.
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